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LECTURE 7

• Properties of the limit of a function

• One-sided limits

• Asymptotes



Example 1. Find lim
𝑥→0

𝑠𝑖𝑛
1

𝑥
if it exists.

We use Heine definition:
First, let 𝑥𝑛 =

1

2𝑛𝜋+
𝜋

2

. Then, lim
n→∞

𝑠𝑖𝑛 𝑥𝑛 = lim
𝑛→∞

𝑠𝑖𝑛 2𝑛π +
π

2
= 

lim
𝑛→∞

1 = 1. 

Next, use another sequence 𝑦𝑛 =
1

2𝑛π−
π

2

. In this case, lim
𝑛→∞

𝑠𝑖𝑛 𝑦𝑛

= lim
𝑛→∞

𝑠𝑖𝑛 2𝑛π −
π

2
=  lim

𝑛→∞
(−1) =  −1.

We conclude that the function 𝑠𝑖𝑛
1

𝑥
has no limit at 0 because we 

have found two sequences convergent to 0, (xn) and (yn), and the 

limits of corresponding sequences of values of f differ.



Example 2. Find lim
𝑥→0

𝑥2 sin
1

𝑥
or prove that it doesn't exists.

We will use Cauchy definition to show that lim
𝑥→0

𝑥2 sin
1

𝑥
= 0.

Let ε be a positive real number. We must find a positive number δ 

such that  0 < |𝑥  −  0| < δ implies 𝑥2 sin
1

𝑥
− 0 < ε. For every 

x0, 𝑥2 sin
1

𝑥
≤ x2. So, if we put δ = ε , then whenever 0 <

𝑥 < δ = ε

x2 sin
1

x
≤ x2 < ε 2 = ε.

We are not bothered by the fact that sin
1

𝑥
is undefined for x=0



FAQ.

1. In example 1, how to find such two sequences? 
There is no useful answer to this question other than the 
usual, boring one – practice, practice, practice …

2. How do I know whether I should try to show that the 
function has or that it does not have a limit at a point?
The same boring answer.

3. Does example 2 indicate that we should try to find some 
sort of rule which assigns a delta to an epsilon?
Yes, exactly. It does not have to be a function, though. Any
 such that 0 < δ ≤ ε will do.

4. Sometimes you say number sometimes point. What is the 
difference?
None, in this context. Every point on the real axis is a 
number and every number is a point on the real axis.



Limits involving infinity 
1. Limits at infinity.

Definition.
A number L is the limit of  f  as x approaches ∞ iff

(C) ∀ε > 0 ∃c ∈ ℝ ∀𝑥 ∈ ℝ 𝑥 > 𝑐 ⇒ 𝑓 𝑥 − 𝐿 < ε

(H) for every sequence (xn), ( lim𝑛→∞
𝑥𝑛 = ∞ ⇒ lim

𝑛→∞
𝑓(𝑥𝑛) = 𝐿 )

In a similar way we define the limit of f as x approaches −∞
(minus infinity).

The graph from Wikipedia

We use notation 

lim
𝑥→∞

𝑓(𝑥) = 𝐿

or

lim
𝑥→−∞

𝑓(𝑥) = 𝐿



Limits involving infinity 
2. Infinity as the limit.

Definition.
For a function f and a point c we say lim

𝑥→𝑐
𝑓(𝑥) = ∞ iff

(C) ∀M ∈ ℝ ∃ > 0 ∀x ∈ 𝐷𝑜𝑚(𝑓) 0 < x − c <  ⇒ 𝑓 𝑥 > 𝑀

(H) for every sequence (xn), lim𝑛→∞
𝑥𝑛 = 𝑐 ⇒ lim

𝑛→∞
𝑓(𝑥𝑛) = ∞

In a similar way we define lim
𝑥→𝑐

𝑓 𝑥 = −∞

The graph from Wikipedia.

lim
𝑥→0

log2 𝑥 = −

Notice that we ignore points 

to the left of 0 – they do not 

belong to Domf .



Definition.
A number L is the right-sided limit of a function f at a point p iff L 
is the limit of the function 𝑓+ = 𝑓|(𝑝;∞) at p.

A number L is the left-sided limit of a function f  at a point p iff L is 
the limit of the function 𝑓− = 𝑓|(−∞;𝑝) at p.

Right-sided and left-sided limits are denoted by lim
𝑥→𝑝+

𝑓 𝑥 and 

lim
𝑥→𝑝−

𝑓 𝑥 , respectively.

In their campfire talks mathematicians use phrases like "limit as x 
approaches p from the right" or "as x approaches p from above".

All this boils down to "we ignore what happens to the right (or left) 
of p".



Example.

Let 𝑓 𝑥 =
𝑥

𝑥
. The domain of f is ℝ ∖ 0 . Find lim

𝑥→0+
𝑓 𝑥 , 

lim
𝑥→0−

𝑓 𝑥 and lim
𝑥→0

𝑓 𝑥 .

To find lim
𝑥→0+

𝑥

𝑥
we "let x approach 0 from above", which means we 

ignore what happens if 𝑥 ≤ 0. For positive x-s 
𝑥

𝑥
=

𝑥

𝑥
= 1, hence 

our limit lim
𝑥→0+

𝑥

𝑥
= 1. Similarly, for x-s smaller than 0, 

𝑥

𝑥
= −1, 

hence lim
𝑥→0−

𝑥

𝑥
= −1.

Consider sequences 
1

𝑛
and −

1

𝑛
, both convergent to 0. Clearly, 

lim
𝑛→∞

𝑓
1

𝑛
= 1 and lim

𝑛→∞
𝑓

−1

𝑛
= −1. From Heine definition we

conclude that lim
𝑥→0

𝑓 𝑥 doesn't exist.



The last example can be generalized into the following theorem:

Theorem.

The limit lim
𝑥→𝑝

𝑓 𝑥 exists if and only if lim
𝑥→𝑝+

𝑓 𝑥 and lim
𝑥→𝑝−

𝑓 𝑥

exist, and 

lim
𝑥→𝑝+

𝑓 𝑥 = lim
𝑥→𝑝−

𝑓 𝑥

Remark.
The idea of one-sided limits does not apply to limits at ∞ or −∞.

It does apply, though, including the above theorem, to infinite 
limits.

Example.

lim
𝑥→0

1

𝑥
does not exist because lim

𝑥→0+

1

𝑥
= ∞ while lim

𝑥→0−

1

𝑥
= −∞. On 

the other hand, lim
𝑥→0

1

𝑥2
= ∞ because lim

𝑥→0+

1

𝑥2
= ∞ and lim

𝑥→0−

1

𝑥2
= ∞



Theorem. (Properties of the limit)

Suppose that lim
𝑥→𝑝

𝑓 𝑥 and lim
𝑥→𝑝

𝑔 𝑥 exist. Then

1. lim
𝑥→𝑝

(𝑓 + 𝑔) 𝑥 = lim
𝑥→𝑝

𝑓 𝑥 + lim
𝑥→𝑝

𝑔 𝑥 ,

2. lim
𝑥→𝑝

(𝑓 ⋅ 𝑔) 𝑥 = lim
𝑥→𝑝

𝑓 𝑥 ⋅ lim
𝑥→𝑝

𝑔 𝑥 ,

3. lim
𝑥→𝑝

𝑓

𝑔
𝑥 = 

lim
𝑥→𝑝

𝑓 𝑥

lim
𝑥→𝑝

𝑔 𝑥
, assuming 𝑔 𝑥 ≠ 0 on some open 

interval containing p and lim
𝑥→𝑝

𝑔 𝑥 ≠ 0.

Remarks. 

• The theorem applies to limits at +∞ or −∞ and to one-sided 
limits.

• The theorem easily follows from the corresponding properties of 
the limit of a sequence.



Corollary. (Properties of the limit ctd.)

1. lim
𝑥→𝑝

(𝑓 − 𝑔) 𝑥 = lim
𝑥→𝑝

𝑓 𝑥 − lim
𝑥→𝑝

𝑔 𝑥 ,

2. lim
𝑥→𝑝

(𝑐 ⋅ 𝑔) 𝑥 = 𝑐 ⋅ lim
𝑥→𝑝

𝑔 𝑥 for every constant c

Remark.

Part 2 follows from part 2 of the theorem with 𝑓 𝑥 = 𝑐 for every 𝑥. 
Part 1:

lim
𝑥→𝑝

(𝑓 − 𝑔) 𝑥 = lim
𝑥→𝑝

(𝑓 + (−1)𝑔) 𝑥 = lim
𝑥→𝑝

𝑓 𝑥 +

lim
𝑥→𝑝

−1 𝑔 𝑥 = lim
𝑥→𝑝

𝑓 𝑥 − lim
𝑥→𝑝

𝑔 𝑥 .

Remark.

Since for every number c, lim
𝑥→𝑐

𝑥 = 𝑐 we obtain that for every 

polynomial f(x), lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐).



Theorem (Sandwich Theorem for functions)

Suppose functions 𝑓, 𝑔 and ℎ satisfy 𝑓 𝑥 ≤ 𝑔 𝑥 ≤ ℎ 𝑥 on  
some open interval containing p and suppose lim

𝑥→𝑝
𝑓 𝑥 and

lim
𝑥→𝑝

ℎ 𝑥 exist and both are equal to some number L. Then 

lim
𝑥→𝑝

𝑔 𝑥 exists and lim
𝑥→𝑝

𝑔 𝑥 = 𝐿.

Remarks. 

• The theorem applies to limits at +∞ or −∞ and to one-sided 
limits.

• The theorem follows from the sandwich theorem for sequences.



Definition.
The line 𝑥 = 𝑎 is a vertical asymptote of a function 𝑓 iff

lim
𝑥→𝑎+

𝑓 𝑥 = ±∞ or lim
𝑥→𝑎−

𝑓 𝑥 = ±∞

Definition.
The line 𝑦 = 𝑎𝑥 + 𝑏 is an oblique asymptote of a function 𝑓 iff 

lim
x→+∞

𝑓 𝑥 − 𝑎𝑥 + 𝑏 = 0 or lim
𝑥→−∞

𝑓 𝑥 − 𝑎𝑥 + 𝑏 = 0.

When 𝑎 = 0 the oblique asymptote is called the horizontal 
asymptote.

Essentially, we should say asymptote of the graph of a function
because it is a geometrical object.



Example.

Lines 𝑥 = 0 and 𝑦 = 𝑥 are 

vertical and oblique 

asymptotes, respectively, for 

𝑓(𝑥) =
1

𝑥
+ 𝑥, 

For this function, the line 𝑦 = 0 is a 

horizontal asymptote at −∞, line 𝑥 = 0 is 

a vertical asymptote and 𝑦 = 2𝑥 is an 

oblique asymptote at +∞.

The graphs from Wikipedia



Example. The graph from Wikipedia

Each line 𝑦 = 𝑘𝜋 +
𝜋

2
is a vertical asymptote of (the graph of) 

𝑡𝑎𝑛



FAQ. How the hell do I find asymptotes for 𝑓(𝑥)?

To find vertical asymptotes just look for points around which the 
values of your function are unbounded (division by zero, 
logarithm near zero and the like). 

To find an oblique asymptote look at the definition: the line 𝑦 =
𝑎𝑥 + 𝑏 is the oblique asymptote for 𝑓(𝑥) at +∞ if and only if

lim
𝑥→+∞

[𝑓 𝑥 − (𝑎𝑥 + 𝑏)] = 0. Dividing both sides by x we get

0 = lim
𝑥→+∞

𝑓 𝑥 − 𝑎𝑥+𝑏

𝑥
= lim
𝑥→+∞

𝑓 𝑥

𝑥
− lim

𝑥→+∞

𝑎𝑥

𝑥
− lim

𝑥→+∞

𝑏

𝑥
= 

lim
𝑥→+∞

𝑓 𝑥

𝑥
− 𝑎 hence, lim

𝑥→+∞

𝑓 𝑥

𝑥
= 𝑎. Once we have a, we check 

if there exists the limit 𝑙𝑖𝑚
𝑥→+∞

𝑓 𝑥 − 𝑎𝑥 . If it does, then b 

= 𝑙𝑖𝑚
𝑥→+∞

𝑓 𝑥 − 𝑎𝑥 . If it does not – there is no asymptote at

+∞.



Theorem.

A function 𝑓(𝑥) has an asymptote at +∞ iff there exist limits

𝑙𝑖𝑚
𝑥→+∞

𝑓 𝑥

𝑥
= a and 𝑙𝑖𝑚

𝑥→+∞
𝑓 𝑥 − 𝑎𝑥 = b . Then the line 

y = ax+b is the asymptote.

Notice that the existence of 𝑙𝑖𝑚
𝑥→+∞

𝑓 𝑥

𝑥
is not enough. For example

consider 𝑓(𝑥) = 𝑥 . 𝑙𝑖𝑚
𝑥→+∞

𝑥

𝑥
= 0 = 𝑎 but 𝑙𝑖𝑚

𝑥→+∞
( 𝑥 −0𝑥)

does not exist. 

A similar theorem is valid for an oblique asymptote at −∞.


